CHROM. 9597

WHISKER-WALLED OPEN-TUBULAR GLASS COLUMNS IN GAS CHRO-MATOGRAPHY

III. APPLICATIONS

J. D. SCHIEKE and VICTOR PRETORIUS*

Institute for Chromatography, University of Pretoria, Pretoria (South Africa) (First received December 5th, 1975; revised manuscript received July 27th, 1976)

SUMMARY

Examples are given of the use of whisker-walled open-tubular columns for separating various mixtures, *viz.*, hydrocarbons, steroids, essential oils, pesticides and fatty acids.

INTRODUCTION

Various aspects of whisker-walled open-tubular (WWOT) columns, including methods of construction and chromatographic performance, have been reported previously¹⁻³. In this paper, examples are given of the separations that can be achieved using non-polar, slightly polar and polar stationary phases with a variety of types of mixtures that are important in practice.

EXPERIMENTAL

Columns were drawn from borosilicate glass and provided with a layer of silica whiskers as described previously². The columns were 45–55 m long with I.D. 0.02– 0.04 cm. The silica whiskers were deactivated using benzyltriphenylphosphonium chloride⁴ when coated with a non-polar stationary phase. When a polar or slightly polar stationary phase was used, prior deactivation was not necessary. Stationary phase was coated on to the whiskers using the dynamic coating method⁵. The columns were then conditioned at room temperature for 24 h, during which time dry nitrogen was passed through them. Finally the temperature was increased at the rate of $1-2^{\circ}/$ min to $10-30^{\circ}$ above the working temperature of the column and maintained at this level for 24 h (*cf.*, Table I).

The effective plate height, h, and the effective number of plates per metre $(N_{eff} \cdot m^{-1})$ were determined in the normal way³ by injecting a solute for which the mass

^{*} To whom correspondence should be addressed.

TABLE I

Parameter	1	2	3	4	5
Stationary phase	Squalane	Squalane	OV-101	Dexsil 410	Carbowax 20 M
Column length (m)	44.8	55.4	54	55	48.6
Column radius (cm)	0.012	0.016	0.012	0.014	0.012
Concentration of coating mixture (weight of stationary phase volume of solvent, %)	5	5	2.5	2.5	5
Conditioning temperature (°C)	130	130	250	270	230
Plate height, H (cm)	0.04	0.04	0.045	0.065	0.055
Effective plate	0.09	0.13	0.10	0.15	0.10
Height, h (cm)					
$N_{\rm eff} \cdot {\rm m}^{-1}$	1100	770	950	660	1000
Mean carrier gas flow Velocity, \bar{u} (cm·sec ⁻¹)	24	14	16	25	24
Mass distribution Coefficient, k	1.85	1.2	1.9	1.9	2.9
Column temperature (°C)	81	81	200	200	220

SUMMARY OF THE CHARACTERISTICS AND PERFORMANCES OF THE DIFFERENT COLUMNS USED

distribution coefficient, k, varies between 1 and 3, into the separating system at the operating temperature for the column. Data pertaining to the columns are set out in Table I.

A Varian Aerograph Model VA 1800 gas chromatograph was modified to accomodate the column³. A flame-ionization detector was used. The splitting ratio at the inlet was 75:1.

Fig. 1.

Fig. 1. Analysis of high-octane gasoline prepared synthetically from coal. Column dimensions: 44.8 m \times 0.024 cm I.D.; stationary phase: squalane; carrier gas: helium; mean carrier gas flow velocity: 24 cm-sec⁻¹; sample volume injected: 2 μ l; column temperature: programmed as shown.

Fig. 2. Analysis of analytically pure *n*-heptane. The peak marked with an arrow corresponds to an amount less than 1 ppm. Column dimensions: $55.4 \text{ m} \times 0.032 \text{ cm}$ I.D.; stationary phase: squalane; carrier gas: nitrogen; mean carrier gas flow velocity: $14 \text{ cm} \cdot \text{sec}^{-1}$; sample volume injected: $2 \mu \text{l}$; column temperature: 85° .

Fig. 3. Analysis of a synthetic mixture of chlorinated pesticides. Column dimensions: $54 \text{ m} \times 0.024 \text{ cm}$ I.D.; stationary phase: OV-101; carrier gas: nitrogen; mean carrier gas flow velocity: 15 cm·sec⁻¹; sample volume injected: 1 µl; column temperature: 220°. Peaks: $1 = \gamma$ -BHC; 2 = heptachlor; 3 = aldrin; $4 = \alpha$ -thiodane; 5 = p,p'-DDE; $6 = \beta$ -Thiodane; 7 = p,p'-TDE; 8 = p,p'-DDT; 9 = dieldrin.

Fig. 4. Analysis of a synthetic mixture of $C_{6}-C_{20}$ fatty acid methyl esters. Column dimensions: 48.6 m × 0.024 cm I.D.; stationary phase: Carbowax 20M; carrier gas: nitrogen; mean carrier gas flow velocity: 24 cm sec⁻¹; sample volume injected: 1 µl; column temperature: 220°. Peaks: 1 = methyl caproate $(n-C_6)$; 2 = methyl caprylate $(n-C_8)$; 3 = methyl caprate $(n-C_{10})$; 4 = methyl undecanoate $(n-C_{11})$; 5 = methyl laurate $(n-C_{12})$; 6 = methyl tridecanoate $(n-C_{13})$; 7 = methyl myristate $(n-C_{14})$; 8 = methyl palmitate $(n-C_{16})$; 9 = methyl stearate $(n-C_{18})$; 10 = methyl oleate $(n-C_{18}, 1$ double bond); 11 = methyl linoleate $(n-C_{18}, 2$ double bonds); 12 = methyl linolelaidate $(n-C_{18}, 3$ double bonds); 13 = methyl arachidate $(n-C_{20})$.

EXAMPLES OF SEPARATIONS

Chromatograms of various separations are shown in Figs. 1-7.

Fig. 5. Analysis of fatty acid methyl esters of a polished mackerel oil. Column dimensions: 48.6 m \times 0.024 cm I.D.; stationary phase: Carbowax 20M; carrier gas: nitrogen; mean carrier gas flow velocity: 16 cm·sec⁻¹; sample volume injected: 1 μ l; column temperature: 230°.

Fig. 6. Analysis of a peppermint oil sample. Column dimensions: 48.6 m \times 0.024 cm I.D.; stationary phase: Carbowax 20M; carrier gas: nitrogen; mean carrier gas flow velocity: 24 cm sec⁻¹; sample volume injected: 1 µl; column temperature: programmed as shown.

DISCUSSION

WWOT columns can be satisfactorily coated with non-polar and polar stationary phases and can be employed to separate many important types of mixtures.

Fig. 7. Analysis of a synthetic mixture of trimethylsilyl (TMS) derivatives of 17-ketosteroids. Column dimensions: 48.6 m \times 0.024 cm I.D.; stationary phase: Dexsil 410; carrier gas: nitrogen; mean carrier gas flow velocity: 25 cm sec⁻¹; sample volume injected: 2 μ l; column temperature: 220°. Peaks: TMS derivatives of 1, etiocholanolane; 2, androsterone; 3, dehydroepiandrosterone; 4, 11-ketoandrosterone; 5, 11- β -hydroxyetiocholanolane.

The resolution obtained is at least comparable to that of other types of open-tubular columns. The amount of solute mixture that can be handled by WWOT columns $(1-5 \mu g \text{ of a single component})$ is similar to that with conventional porous-layer open-tubular columns⁶.

REFERENCES

- 1 J. D. Schieke, N. R. Comins and V. Pretorius, Chromatographia, 8 (1975) 354.
- 2 J. D. Schieke, N. R. Comins and V. Pretorius, J. Chromatogr., 112 (1975) 97.
- 3 J. D. Schieke and V. Pretorius, J. Chromatogr., 132 (1977) 223.
- 4 J. D. Schieke and V. Pretorius, J. Chromatogr., 132 (1977) 217.
- 5 G. Dijkstra and J. de Goey, in D. H. Desty (Editor), Gas Chromatography 1958, Butterworths, London, 1958, p. 56.
- 6 L. S. Ettre and J. E. Purcell, Advan. Chromatogr., 10 (1974) 1.